
Chess Piece Recognition Using Oriented Chamfer Matching with a Comparison
to CNN

Youye Xie1, Gongguo Tang1, William Hoff2
1Department of Electrical Engineering, Colorado School of Mines, Golden, Colorado USA

2Department of Computer Science, Colorado School of Mines, Golden, Colorado USA
{youyexie,gtang,whoff}@mines.edu

Abstract

Recognizing three dimensional chess pieces using com-
puter vision is needed for an augmented reality chess assis-
tant. This paper proposes an efficient 3D pieces recognition
approach based on oriented chamfer matching. During a
real game, the pieces might be occluded by other pieces
and have varying rotation and scales with respect to the
camera. Furthermore, different pieces share lots of similar
texture features which makes them more difficult to identify.
Our approach addresses the above problems and is capa-
ble of identifying the pieces with different scales, rotation
and viewing angles. After marking the possible chessboard
squares that contain pieces, the oriented chamfer scores
are calculated for alternative templates and the recognized
pieces are indicated on the input image accordingly. Our
approach shows high recognition accuracy and efficiency
in experiments and the recognition process can be easily
generalized to other pattern recognition applications with
3D templates. Our approach outperforms the convolution-
al neural networks under severe occlusion and low resolu-
tion conditions and has comparative processing time while
avoids the time consuming training process.

1. Introduction

Augmented reality (AR) can greatly improve the effec-

tiveness of people in work and play. It can automatical-

ly recognize objects using computer vision techniques and

display graphical augmentation registered to the object, to

provide guidance and instruction. AR has been widely ap-

plied in education [1], industrial design and medical treat-

ment [2]. AR can also help people learn the game of chess,

a popular intellectual and entertaining game all over the

world. For example, the system could display allowable

moves as an overlay on an image of the board, using either

a hand-held or a head-mounted display. In order to do this,

a chess AR system must first recognize the chessboard and

the chess pieces, from a mobile hand-held or head-mounted

camera, and locate the pieces on the board. The task can

be challenging if the board is viewed from a low viewing

angle, instead of directly overhead. This may cause pieces

to partially occlude each other. Additionally, some pieces

are highly similar to each other, such as the rook and pawn,

which may lead to misidentification.

This paper focuses on the problem of recognizing differ-

ent 3D chess pieces from a single image of the chessboard,

under game conditions. We use a chamfer matching ap-

proach, which permits flexible operating angles and allows

for different occlusion conditions. Furthermore, our method

has potential in other applications. For example, in many in-

dustrial applications, the objects to be recognized are small

with relatively little image texture [3] and CAD models are

often not available or are difficult to obtain. In these cas-

es, taking a small number of training images is feasible and

our method is applicable to these problem domains. The

paper is organized as follows. In section 2, we describe re-

lated work. In sections 3 and 4, we present our approach

for chessboard and chess piece recognition, respectively. In

section 5, we show experimental results and a comparison

to an alternative approach using convolutional neural net-

works (CNNs). We conclude this paper in section 6.

2. Related Work

Many algorithms have been developed to recognize a

chessboard for the purpose of camera calibration and 3D

scene reconstruction. Most of these use the approach of

detecting corners on the board [4, 5]. However, when

the chessboard is populated with chess pieces, such as

during an actual game, many corners might be occluded

by pieces. Therefore, algorithms for recognizing populat-

ed chessboards typically use line detection based methods

[6, 7, 8].

The research on chess piece recognition is sparse. Early

approaches modified the chessboard and pieces with sen-

sors [9]. However, modified chessboards and pieces are

2001

2018 IEEE Winter Conference on Applications of Computer Vision

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00221

Figure 1: The SIFT features matching for the bishop. 2010 and

1211 SIFT features are extracted from left and right images re-

spectively but only 40 matched features pairs are found.

expensive and not portable. Fortunately, with the rapid in-

crease of computing power on mobile devices, an opportu-

nity exists to apply computer vision methods to chess piece

recognition, which is inexpensive and transferable.

Conventional approaches to object detection extract and

match features such as the histogram of oriented gradient

(HOG) [10] and the scale invariant feature transform (SIFT)

[11]. These techniques work well when the objects have

adequate visual texture. However, as shown in Fig. 1, very

few effective SIFT features can be extracted from the small

chess pieces since they do not have much distinguishable

textures. Moreover, similar features among pieces com-

plicate the matching process. In order to avoid incorrect

matching, [12] and [13] assume the initial positions of the

pieces are known, and then track the movement of pieces

on the chessboard. However, those assumptions are unde-

sirable and we want as few manual operations as possible.

Fortunately, although there is not much distinctive tex-

ture on the pieces, the different pieces have distinctive con-

tours. A contour-based recognition method can match the

observed contour to a template contour that is obtained from

a model of the piece, or from a training image. By exploit-

ing the relative positions of the edge points and normalizing

the magnitudes, contour-based descriptors can be scale and

rotation invariant like the Fourier descriptor with different

shape signatures [14] and the context shape [15]. However,

they also face some challenges. Methods using Fourier de-

scriptors or polygonal approximations [16] may be affected

severely when pieces have similar shapes or when occlusion

occurs. A contour based method that is more robust to these

effects is oriented chamfer matching [17, 18], and this is the

method we selected.

Besides the above methods, convolutional neural net-

works have recently achieved great success in image classi-

fication and object detection problems [19, 20, 21], on large

scale data sets like the ImageNet [22]. Therefore, we also

implement several convolutional neural networks and com-

pare them to our oriented chamfer matching approach. As

far as we know, this is the first paper applying a convolu-

tional neural network approach to the problem of 3D chess

piece recognition under game conditions.

3. Chessboard Recognition

Chessboard recognition is an important first step toward-

s piece recognition, since finding the board constrains the

search for pieces. Additionally, we need to find the board

in order to determine the relative locations of the pieces

with respect to the board. As stated in the introduction,

there are many chessboard recognition algorithms but on-

ly a few consider populated boards where the pieces cause

occlusion. We chose to use a line detection based method

since it is rare that a board line is completely occluded

by the pieces. Specifically, we use the algorithm of [8]

which achieves a high chessboard recognition success rate

and more importantly, their workable viewing angles range

covers the angles that a player would naturally look at the

chessboard during a game. We briefly introduce their algo-

rithm as follows.

Given a chessboard image, the Canny edge detector and

Hough transform are used to find all possible lines in the

image. The detected lines are clustered into two groups

based on their locations in a scaled Hough transform space.

These two groups correspond to the two orthogonal sets of

lines on the chessboard. In the same space, outlier lines are

filtered out by observing the relation between the detect-

ed lines. The intersections of two groups of remaining lines

are calculated and recorded. Finally, all possible chessboard

location candidates are transformed and matched to a chess-

board reference model. The location with largest number of

correct matching corners and the smallest matching residual

error becomes the system output.

Once the chessboard lines are found, we need to find the

pose of the board with respect to the camera, in order to

predict the possible locations and appearance of the chess

pieces. This requires the camera intrinsic parameter matrix

K, and the board-to-camera rotation matrix RC
B (R is used

to indicate RC
B in the following content). These two matri-

ces can be estimated from the vanishing points of the two

sets of chessboard lines by solving the following equations

[23].

Rx = K−1

⎡
⎣
x1

y1
1

⎤
⎦ Ry = K−1

⎡
⎣
x2

y2
1

⎤
⎦ (1)

K−1 =

⎡
⎣

1
f 0 − cx

f

0 1
f − cy

f

0 0 1

⎤
⎦ (2)

< Rx, Ry >= 0 (3)

where Rx and Ry are the board coordinate system’s bases in

x and y directions. (x1, y1) and (x2, y2) are the vanishing

points coordinates on the image plane. In addition, cx, cy
and f are the optical center of the image and the camera

focal length in pixels. Finally, the last column of the rotation

2002

Figure 2: The chessboard preprocessing result. The board bound-

aries are marked by green lines and the normal vector of each

square is indicated using a blue stick.

matrix, Rz , can be obtained by taking cross product of Rx

and Ry .

Since we only have a single image of the chessboard, un-

less we know the size of the chessboard, there is no way to

find out the true object scale. Therefore, we define a hyper-

plane using the board coordinate system’s Rz basis as the

support vector and a fixed constant to control the scale fac-

tor automatically. Based on the hyperplane and the rotation

matrix, the normal vector for each square can be calculat-

ed and printed on the image as shown in Fig. 2 using blue

sticks.

4. Piece Recognition
Once the pose of the chessboard has been found, the pose

of each square can be estimated. This is needed to rotate

and scale the templates that are used for matching. We will

focus on piece recognition in the following sections.

4.1. Piece Location & Color Detection

Before matching templates, we want to determine pos-

sible piece locations in order to reduce the computation

complexity. By leveraging the four chessboard corners in a

homography transformation, an orthophoto (i.e., top-down

view) of the chessboard is generated as shown in Fig. 3.

Possible squares where pieces might be located are deter-

mined by counting the number of edge points in the areas

that are indicated by green rectangles. An eight times eight

matrix stores the possible squares occupied by pieces.

When the board is viewed from a very low angle, one

chess piece might occupy several squares in the orthophoto

like the bishop in Fig. 3 which covers both the square it

occupies and the square behind it. In this case, a false in-

dication of occupancy may occur. So a chamfer matching

score threshold operation is implemented to avoid a false

positive detection.

We next locate areas of interest (AOI) in the original im-

age that may contain chess pieces. The size of an AOI in the

image is relative to the viewing angle of the board. When

the chessboard image is taken from a relatively low angle,

Figure 3: Left: Orthophoto of the board. Right: Search regions for

occupied squares.

pieces are taller than in a direct overhead view. So a lower

viewing angle leads to a larger AOI height. The height of

the AOI must be large enough to contain the image of the

largest pieces, which are the king and queen. The width of

the AOI is set to the width of the corresponding square on

the board.

Figure 4: The AOIs in the input image.

We can determine the color of the pieces at this stage

as well. Since we know the locations of the squares, we

can find the average intensities for both black, Ib, and white

squares, Iw. Each candidate’s color is initiated to the square

color which it stands on. The final decision can be easily

made by comparing each candidate square’s intensity, Iij ,

to Iw and Ib.

Pij =

⎧⎪⎨
⎪⎩

Black, if Iij < kwIw, square (i, j) is white

White, if Iij > kbIb, square (i, j) is black

same as the (i, j) square’s color

(4)

where Pij indicates the color of the piece associated with

the (i, j) square on the chessboard. kw and kb are scaling

factors and in our project, kw = 0.7 and kb = 1.

4.2. Template Preparation

Three steps are performed in preparing the templates for

matching. First, selecting the template based on the viewing

angle. Second, rotating the template based on the normal

vector. Third, scaling the template based on the square size.

For each chess piece, 12 templates with different view-

ing angles are captured as shown in Fig. 5. They range

2003

from 10 to 70 degrees, where the template viewing angle is

defined in Fig. 6. Note that the knight is not symmetrical

around its vertical axis, so additional templates are needed

for this piece to represent its appearance for rotations about

the vertical axis. However, for simplicity, we assume all

the knights are facing right and therefore only 12 templates

are applied in this paper. During recognition, the viewing

angle of the square being examined is calculated, and the

templates nearest to that angle will be selected for the fol-

lowing translation and matching.

Figure 5: The bishop templates for chamfer matching.

Furthermore, the pieces do not always lie vertically and

have varying sizes in the images due to their positions with

respect to the camera. In the case that a piece is not vertical

in the input image, we will rotate the templates accordingly

as shown in Fig. 7 and scale it to fit into the observing

square.

Figure 6: The viewing angle.

Figure 7: The selected and translated pawn’s template.

4.3. Oriented Chamfer Matching

As previously stated, we use a contour-based recognition

method because of the lack of texture features. Chamfer

distance matching, originally proposed in [24], is a well-

established contour matching technique which measures

the similarity between the objects in the input image and

templates. For every candidate object position, a chamfer

matching score is calculated. The object’s class and loca-

tion are determined by the template and the region that get

the minimum chamfer matching score.

The traditional chamfer matching requires the edge im-

ages for both the input image, I , and the template, T . The

chamfer distance can be obtained by solving the following

least square problem where |T | is the number of total edge

points in the template and τ is the truncation parameter for

normalization. In our project, τ = 30.

ddist(x) =
1

τ |T |
∑
xt∈T

min(τ,min
xi∈I

||(xt + x)− xi||2).

(5)

For a specific matching starting point x in the input image,

the chamfer distance score is the average distance between

the template edge points and their nearest edge points in

the input image. Furthermore, the above least square prob-

lem can be solved efficiently by mapping the desired tem-

plate’s edge image onto a pre-computed input image’s dis-

tance transformation image and summing up the element-

wise product of pixel intensities within the template covered

region.

To provide additional stability and resistance to back-

ground noise, edge orientation is adopted to compare the

gradient differences [17, 18]. The orientation score can be

calculated by solving the following least square problem

where φ is a function measuring the edge point’s orienta-

tion in radians. The physical meaning of φ and ddist in the

input image can be found in Fig. 8.

dorient(x) =
2

π|T |
∑
xt∈T

|φ(xt)−

φ(argmin
xi∈I

||(xt + x)− xi||2)|. (6)

Similarly, the orientation score can also be calculated ef-

ficiently using the pre-computed gradient images. The final

chamfer score is calculated by:

dscore(x) = (1− λ)ddist(x) + λdorient(x), (7)

where λ is a weight factor in the range of [0, 1]. In our

project, λ = 0.5 and the detailed analysis regarding differ-

ent values of λ can be found in the section 5.6. A perfect

matching would get a score of 0. After template matching,

the template with smallest oriented chamfer matching score

and its corresponding location will be marked on the input

image for each AOI. Templates with high scores are reject-

ed.

4.4. Matching Process

The matching process is quite straight forward. For each

AOI, all templates taken from the angle that matches the

2004

Figure 8: The oriented chamfer matching.

observing square’s viewing angle are selected and translat-

ed for chamfer matching. A list stores the chamfer scores

for all different templates and records the template with the

minimum score. In addition, to expedite the matching pro-

cess, an N -sampling strategy is applied. Namely, we com-

pute the chamfer score with a stride of N pixels if we are

in a high score area, but compute the score at every pixel in

the low score areas. The idea is to focus our computational

resources on the most promising piece locations. After fin-

ishing all AOI matching, the recognition results including

the pieces colors, names and their corresponding locations

are shown on the input image as shown in Fig. 9.

Figure 9: The recognition result.

We can reject invalid piece detections by a threshold on

the chamfer matching score. To determine this threshold,

we recorded the oriented chamfer matching scores for dif-

ferent templates and true classes for a typical image in Table

1. Based on the table, 0.2 is a reasonable threshold to rule

out a false positive detection.

5. Experiments

We tested our approach and compared it to several alter-

native approaches based on convolutional neural networks,

on a series of real chessboards taken from varying angles

and different resolutions. In addition, we quantify the effect

of occlusion and pan angles and evaluate their processing

time. Furthermore, we study the performance with different

algorithm parameters. Examples of input images and the

recognition results are shown in Table 2.

5.1. Experimental Setup

In order to imitate the views that a player would natu-

rally have during a real game, the viewing angle of the test

images is approximately 40 degrees using the definition in

Fig. 6. The sampling mode is 3-sampling and λ = 0.5.

Thirty test images are taken and the number of pieces by

type is shown in Table 3.

Table 3: The pieces distribution of the test set.

Board King Queen Bishop Knight Rook Pawn

30 43 32 76 63 98 173

In addition, several test sets with same piece distribution

but different occlusion conditions and pan angles are col-

lected. In all test sets, we assume there is no piece directly

behind another since we will study the effect of occlusion

individually.

5.2. Convolutional Neural Networks

In this experiment, we selected three of the most popu-

lar convolutional neural networks, GoogleNet [19], ResNet

[20] and VGG [21], to compare with the oriented chamfer

matching approach. Furthermore, the research of transfer

learning shows that the learned CNN features are transfer-

able among similar tasks [25]. Therefore, all the selected

networks are pre-trained on the ImageNet [22] classification

data set for initialization. And to adapt to the piece recogni-

tion application, the networks’ last layers are replaced by a

softmax regression with six output nodes and all test images

are resized to 223× 223× 3 pixels accordingly. The Adam

optimization algorithm [26] is applied with 0.001 learning

rate and 1000 maximum iteration number. To train the sys-

tem, we took 20 additional chessboard images and extract-

ed the pieces as the training set which contains pieces im-

ages with varying viewing angles and colors. The number

of training images for each piece type is listed in Table 4

and four bishop training examples are shown in Fig. 10.

Table 4: The number of training images of each piece type for

convolutional neural networks and oriented chamfer matching.

Convolutional neural network

King Queen Bishop Knight Rook Pawn

40 40 40 40 40 60

Oriented chamfer matching

King Queen Bishop Knight Rook Pawn

12 12 12 12 12 12

In the first experiment, we train and evaluate the neu-

ral networks and oriented chamfer matching’s performance

on images where the pan angle of the camera (the rotation

about the vertical axis) with respect to the board is zero de-

grees. Pieces have less than 10% occlusion and the resolu-

2005

Table 1: The oriented chamfer matching scores.

True class \ Template King Queen Bishop Knight Rook Pawn

King 0.1285 0.1705 0.2201 0.2041 0.1930 0.2050

Queen 0.1537 0.0605 0.1969 0.1731 0.1674 0.2016

Bishop 0.3044 0.3482 0.0764 0.2007 0.1270 0.1669

Knight 0.3283 0.3473 0.2550 0.0925 0.1820 0.1868

Rook 0.1992 0.1838 0.1288 0.1871 0.0860 0.1389

Pawn 0.2809 0.2701 0.1899 0.2605 0.1994 0.0794

Empty square 0.3083 0.2619 0.2754 0.2778 0.2588 0.2754

Table 2: The 3D chess pieces recognition experiments. The first row shows the recognition process of a 720×960 pixels test image. The

second row shows the recognition process with a 240×320 pixels test image. The third row shows the 60% occlusion image’s recognition

process and the last row shows the recognition process on a test image with a 30 degree pan angle.

Input images Preprocessing Templates matching Recognition result

Figure 10: Four bishop training examples for CNN.

tion of the images is 720 × 960 pixels. Their recognition

accuracy is recorded in Table 5 from which we can observe

that all approaches perform quite well at piece recognition.

The oriented chamfer matching method achieves 95.46%

accuracy which is better than ResNet50 but slightly worse

than GoogleNet and VGG-16. However, to achieve this per-

formance, the neural networks require 3.6 times larger train-

ing set than the oriented chamfer matching.

5.3. Effect of Resolution

In this section, we evaluate the effect of image reso-

lution. We use 120, 240, 360, 480 and 720 to indicate

120×160, 240×320, 360×480, 480×640 and 720×960
resolution test sets respectively and record both the convolu-

tional neural networks and the oriented chamfer matching’s

2006

Table 5: The recognition accuracy for different approaches.

King Queen Bishop Knight Rook Pawn Overall

GoogleNet 97.67% 100.00% 100.00% 100.00% 97.96% 96.53% 98.14%

VGG-16 100.00% 90.63% 97.37% 98.41% 87.76% 99.42% 96.08%

ResNet50 88.37% 100.00% 100.00% 100.00% 81.63% 97.69% 94.43%

Oriented Chamfer 90.70% 90.63% 85.53% 100.00% 95.92% 100.00% 95.46%

120 240 360 480 720

Resolution

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

OriChamfer

GoogleNet

VGG-16

ResNet50

Figure 11: The recognition accuracy with different resolutions.

overall recognition accuracy in Fig. 11.

The oriented chamfer matching outperforms convolu-

tional neural networks when the images are taken by a low

resolution camera. It may be that the low resolution test im-

ages lose the features that neural networks learned from the

high resolution training images.

5.4. Effect of Occlusion and Pan Angle

The above two experiments are evaluated on the test set

with no or slight occlusion (< 10% occlusion). To quanti-

fy the occlusion effect, we select several test images where

all pieces are successfully recognized and start occluding

the pieces with a 10% interval. Specifically, 60% occlusion

means 60% area of the pieces from the bottom is occlud-

ed and an example is shown in the 3rd row in Table 2. The

overall accuracy for both convolutional neural networks and

oriented chamfer matching under different occlusion condi-

tions is recorded in Fig. 12. As expected, accuracy decreas-

es as the occlusion effect becomes stronger. We observe that

under severe occlusion (≥ 60%), oriented chamfer match-

ing outperforms the convolutional neural networks. It is

possible that the convolutional neural networks might per-

form better in these cases if the training set included many

more examples of occluded pieces.

Finally, in a real usage scenario, the camera may pan

around the chessboard. Therefore, we also evaluate the ap-

proaches with different pan angles in Fig. 13. It can be

observed that panning the camera away from the zero angle

brings down the accuracy. The oriented chamfer matching

achieves similar accuracy to GoogleNet while outperforms

0% 10% 20% 30% 40% 50% 60% 70% 80%

Occlusion

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u

ra
c
y

OriChamfer

GoogleNet

VGG-16

ResNet50

Figure 12: The recognition accuracy with different percentages of

occlusion.

0o 10o 20o 30o

Pan angle

80%

82%

84%

86%

88%

90%

92%

94%

96%

A
c
c
u

ra
c
y

OriChamfer

GoogleNet

VGG-16

ResNet50

Figure 13: The recognition accuracy with different pan angles.

the VGG-16 and ResNet50.

5.5. Processing Time

Regarding the efficiency, we evaluate the convolutional

neural networks and oriented chamfer matching in terms of

the processing time and they are implemented using Tensor-

Flow [27] and Matlab respectively on an i7 6700K CPU. For

the oriented chamfer matching, two major factors affecting

the processing time are the sampling method and the image

resolution. By manipulating these two factors, we acquire

the average processing time of oriented chamfer matching

for different settings in Table 6. Lower resolution implies

smaller searching area and the same applies for the sam-

pling method. The convolutional neural networks’ testing

time is also recorded in Table 6. We find that if we choose

2007

Table 6: The processing (testing) time for recognizing 10 pieces (unit: second). Different resolution images should lead similar testing

time for neural networks since after preprocessing, all images would have the same dimension.

Oriented Chamfer 120 240 360 480 720

0-Sampling 1.3776 1.4578 1.9259 3.4092 7.2975

3-Sampling 1.3932 1.4472 1.8124 3.0181 5.3851

6-Sampling 1.3975 1.3809 1.7419 2.8735 4.7469

9-Sampling 1.3796 1.3772 1.6405 2.7951 4.3742

12-Sampling 1.3719 1.3723 1.6662 2.6239 4.1666

Network Time

GoogleNet 1.2181

VGG-16 8.2453

ResNet50 3.1680

120 240 360 480 720

Resolution

40%

50%

60%

70%

80%

90%

100%

A
c
c
u

ra
c
y

0-Sampling

3-Sampling

6-Sampling

9-Sampling

12-Sampling

Figure 14: The recognition accuracy with different sampling meth-

ods and resolutions.

9-sampling method for the 720 resolution test set, the ori-

ented chamfer matching has comparable processing time to

the neural networks.

In addition, there is a tradeoff between processing time

and accuracy for oriented chamfer matching. To visualize

the tradeoff, we evaluate the overall accuracy for different

settings in Fig. 14. In the low resolution, the width of each

piece is too short to capture useful edge structures and the

12-sampling method might skip the ground true locations.

Both cases lead very low overall accuracy.

5.6. Lambda

Another important factor in the oriented chamfer match-

ing is the parameter λ, which controls the weighting of the

distance score to the orientation score. When λ = 0, the

oriented chamfer matching degenerates to the chamfer dis-

tance matching [24]. When λ = 1, only the orientation

term is applied. We examine and record the overall accura-

cy with different λ in Fig. 15. The accuracy with zero λ is

far smaller than other settings. Because in a noisy edge im-

age, the distortion of the templates combing with the false

edge points may lead the false matching while the orien-

tation term provides an effective guideline to rule out this

situation. In addition, λ = 0.5 achieves the highest accu-

racy in most cases which makes it an excellent choice for

pieces recognition.

120 240 360 480 720

Resolution

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u

ra
c
y

=0.0

=0.2

=0.5

=0.8

=1.0

Figure 15: The recognition accuracy with different values of λ.

6. Conclusion

In this paper, we present an approach for 3D chess piece

recognition using oriented chamfer matching. After recog-

nizing the chessboard, we can select the appropriate tem-

plates for matching and compute the oriented chamfer score

efficiently. We quantify the effect of resolution, occlusion

and pan angles, analyze the processing time and accuracy

tradeoff and examine the effect of different algorithm pa-

rameters. We also implement the convolutional neural net-

works for comparison. In experiments, the chamfer match-

ing approach achieves similar performance as the convolu-

tional neural networks, but uses a much smaller training set

and avoids the time consuming training process. In addi-

tion, the oriented chamfer matching is more robust in severe

occlusion and low resolution cases. This result may follow

from the fact that in the chamfer matching method, we ex-

plicitly give the system information on what features belong

to the object, but in the convolutional neural networks, the

system must learn what is object versus background from

training examples. It is possible that if more training exam-

ples were used, the performance of the convolutional neural

networks might improve in severe occlusion and low res-

olution cases. However, the collection of labeled training

images is time consuming and a burden for the user. Since

the performance of the two approaches is otherwise compa-

rable, this might indicate the choice of the oriented chamfer

matching approach.

2008

References
[1] H. Kaufmann, “Collaborative augmented reality in educa-

tion,” Institute of Software Technology and Interactive Sys-
tems, Vienna University of Technology, 2003.

[2] R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ra-

macciotti, G. Lovhoiden, and C. Vrancken, “Vein imaging:

a new method of near infrared imaging, where a processed

image is projected onto the skin for the enhancement of vein

treatment,” Dermatologic surgery, vol. 32, no. 8, pp. 1031–

1038, 2006.

[3] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis,

and X. Zabulis, “T-less: An rgb-d dataset for 6d pose esti-

mation of texture-less objects,” in Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on, pp. 880–

888, IEEE, 2017.

[4] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automat-

ic camera and range sensor calibration using a single shot,”

in Robotics and Automation (ICRA), 2012 IEEE Internation-
al Conference on, pp. 3936–3943, IEEE, 2012.

[5] A. De la Escalera and J. M. Armingol, “Automatic chess-

board detection for intrinsic and extrinsic camera parameter

calibration,” Sensors, vol. 10, no. 3, pp. 2027–2044, 2010.

[6] J. E. Neufeld and T. S. Hall, “Probabilistic location of a pop-

ulated chessboard using computer vision,” in Circuits and
Systems (MWSCAS), 2010 53rd IEEE International Midwest
Symposium on, pp. 616–619, IEEE, 2010.

[7] K. Y. Tam, J. A. Lay, and D. Levy, “Automatic grid seg-

mentation of populated chessboard taken at a lower angle

view,” in Computing: Techniques and Applications, 2008.
DICTA’08. Digital Image, pp. 294–299, IEEE, 2008.

[8] Y. Xie, G. Tang, and W. Hoff, “Geometry-based populated

chessboard recognition,” in Tenth International Conference
on Machine Vision (ICMV 2017), International Society for

Optics and Photonics, 2017.

[9] L. Miolo, “Magnetic chessboard with self-centering pieces,”

Nov. 10 1981. US Patent 4,299,389.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for

human detection,” in Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, vol. 1, pp. 886–893, IEEE, 2005.

[11] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International journal of computer vision, vol. 60,

no. 2, pp. 91–110, 2004.

[12] T. Cour, R. Lauranson, and M. Vachette, “Autonomous

chess-playing robot,” Ecole Polytechnique, July, 2002.

[13] N. Banerjee, D. Saha, A. Singh, and G. Sanyal, “A simple au-

tonomous robotic manipulator for playing chess against any

opponent in real time,” in Proceedings of the International
Conference on Computational Vision and Robotics, 2011.

[14] M. Yang, K. Kpalma, and J. Ronsin, “Shape-based invari-

ant feature extraction for object recognition,” Advances in
Reasoning-Based Image Processing Intelligent Systems, p-

p. 255–314, 2012.

[15] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and

object recognition using shape contexts,” IEEE transactions
on pattern analysis and machine intelligence, vol. 24, no. 4,

pp. 509–522, 2002.

[16] H. Imai and M. Iri, “Polygonal approximations of a curve,”

Computational Morphology, pp. 71–86, 2014.

[17] J. Shotton, A. Blake, and R. Cipolla, “Multiscale categorical

object recognition using contour fragments,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 30,

no. 7, pp. 1270–1281, 2008.

[18] A. Thayananthan, B. Stenger, P. H. Torr, and R. Cipolla,

“Shape context and chamfer matching in cluttered scenes,”

in Computer Vision and Pattern Recognition, 2003. Proceed-
ings. 2003 IEEE Computer Society Conference on, vol. 1,

pp. I–I, IEEE, 2003.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,

“Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 1–9, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 770–

778, 2016.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al., “Imagenet large scale visual recognition challenge,”

International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

[23] R. Szeliski, Computer vision: algorithms and applications.

Springer Science & Business Media, 2010.

[24] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.

Wolf, “Parametric correspondence and chamfer matching: T-

wo new techniques for image matching,” tech. rep., DTIC

Document, 1977.

[25] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son, “Cnn features off-the-shelf: an astounding baseline for

recognition,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pp. 806–

813, 2014.

[26] D. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” arXiv preprint arXiv:1412.6980, 2014.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. C-

itro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous

systems,” 2015. Software available from tensorflow.org.

2009

